<|||i

RS/6000 SP: Practical MPI Programming

Yukiya Aoyama
Jun Nakano

International Technical Support Organization

www.redbooks.ibm.com

SG24-5380-00

International Technical Support Organization

RS/6000 SP: Practical MPI Programming

August 1999

SG24-5380-00

Take Note!

Before using this information and the product it supports, be sure to read the general information in Appendix C,
“Special Notices” on page 207.

First Edition (August 1999)

This edition applies to MPI as is relates to IBM Parallel Environment for AIX Version 2 Release 3 and Parallel System
Support Programs 2.4 and subsequent releases.

This redbook is based on an unpublished document written in Japanese. Contact nakanoj@ jp.ibm.com for details.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834

11400 Burnet Road

Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

© Copyright IBM Corp. 1999

Figures vii
Tables Xi
Preface Xiii
The Team That Wrote This Redbook Xiii
Comments Welcome Xiv
Chapter 1. Introduction to Parallel Programming 1
1.1 Parallel Computer Architectures 1
1.2 Models of Parallel Programming 2
1.2.1 SMP Based. 2
1.2.2 MPP Based on Uniprocessor Nodes (Simple MPP). 3
1.2.3 MPP Based on SMP Nodes (Hybrid MPP). 4
1.3 SPMD and MPMD 7
Chapter 2. Basic Conceptsof MPI 11
2.1 Whatis MPI? .. 11
2.2 Environment Management Subroutines. o L. 12
2.3 Collective Communication Subroutines. 14
2.3.1 MPI_BCAST . . 15
2.3.2 MPIL_GATHER. . . . 17
2.3.3 MPI_REDUGE. 19
2.4 Point-to-Point Communication Subroutines. 23
2.4.1 Blocking and Non-Blocking Communication 23
2.4.2 Unidirectional Communication. 25
2.4.3 Bidirectional Communication. 26
2.5 Derived Data Types ot 28
2.5.1 Basic Usage of Derived Data Types 28
2.5.2 Subroutines to Define Useful Derived Data Types. 30
2.6 Managing Groupsottt 36
2.7 Writing MPI Programsin C i 37
Chapter 3. How to Parallelize Your Program 41
3.1 Whatis Parallelization?. 41
3.2 Three Patterns of Parallelization. 46
3.3 Parallelizing I/OBIlocks 51
3.4 Parallelizing DO LOOPSo it 54
3.4.1 Block Distribution 54
3.4.2 Cyclic Distribution 56
3.4.3 Block-Cyclic Distribution 58
3.4.4 Shrinking Arrays 58
3.4.5 Parallelizing Nested Loops i 61
3.5 Parallelization and Message-Passing 66
3.5.1 Reference to OutlierElements 66
3.5.2 One-Dimensional Finite Difference Method 67
3.5.3 Bulk Data TransmissSions.t 69
3.5.4 Reduction Operations i 77
3.5.5 Superposition 78
3.5.6 The Pipeline Method 79
3.5.7 The Twisted Decomposition 83
iii

iv

3.5.8 Prefix Sum. 87

3.6 Considerations in Parallelization 89
3.6.1 Basic Steps of Parallelization. 89
3.6.2 Trouble Shooting 93
3.6.3 Performance Measurements 94

Chapter 4. Advanced MPI Programming 99

4.1 Two-Dimensional Finite Difference Method 99
4.1.1 Column-Wise Block Distribution. 99
4.1.2 Row-Wise Block Distribution 100
4.1.3 Block Distribution in Both Dimensions (1) 102
4.1.4 Block Distribution in Both Dimensions (2) 105

4.2 Finite Element Method. 108

4.3 LU Factorization e 116

4.4 SORMethod 120
4.4.1 Red-Black SOR Method. 121
442 ZebraSORMethod 125
4.4.3 Four-Color SOR Method 128

4.5 Monte CarloMethod 131

4.6 Molecular DynamicCst 134

4.7 MPMD Models.o e 137

4.8 Using Parallel ESSL 139
4.8.1 ESSL. ..o 139
4.8.2 AnOverviewof Parallel ESSL 141
4.8.3 How to Specify Matrices in Parallel ESSL 142
4.8.4 Utility Subroutines for Parallel ESSL 145
4.8.5 LU Factorizationby Parallel ESSL 148

4.9 Multi-Frontal Method 153

Appendix A. How to Run Parallel Jobs on RS/6000SP................ 155

A.1 AlX Parallel Environment. 155

A.2 Compiling Parallel Programs i 155

A.3 Running Parallel Programs 155
A3.1 SpecifyingNodes. 156
A.3.2 Specifying Protocol and Network Device. 156
A.3.3 Submitting Parallel Jobs 156

A.4 Monitoring Parallel Jobs. 157

A5 Standard Output and Standard Error. 158

A.6 Environment Variable MP_EAGER_LIMIT. 159

Appendix B. Frequently Used MPI Subroutines lllustrated 161

B.1 Environmental Subroutines 161
B.1.1 MPLINIT . e 161
B.1.2 MPI_COMM_SIZE e 161
B.1.3 MPI_COMM_RANK e 162
B.1.4 MPI_FINALIZE. e 162
B.1.5 MPI_ABORT ... 163

B.2 Collective Communication Subroutines 163
B.2.1 MPI_BCAST. .. 163
B.2.2 MPE_IBCAST (IBM Extension) 164
B.2.3 MPI_SCATTER e e 166
B.2.4 MPI_SCATTERV e e 167
B.2.5 MPI_GATHER 169
B.2.6 MPI_GATHERV 171

RS/6000 SP: Practical MPI Programming

B.2.7 MPI_ALLGATHER 173

B.2.8 MPI_ALLGATHERV e 174
B.2.9 MPI_ALLTOALL e e 176
B.2.10 MPIL_ALLTOALLYV e e 178
B.2.11 MPI_REDUCE. i 180
B.2.12 MPI_ALLREDUCE i 182
B.2.13 MPI_SCAN e e 183
B.2.14 MPI_REDUCE_SCATTER 184
B.2.15 MPI_OP_CREATE i 187
B.2.16 MPI_BARRIER 189
B.3 Point-to-Point Communication Subroutines 189
B.3.1 MPI_SEND 190
B.3.2 MPI_RECYV e 192
B.3.3 MPI_ISEND. e 192
B.3.4 MPI_IRECV e 195
B.3.5 MPI_WAIT e e e e 196
B.3.6 MPI_GET_COUNT e 196
B.4 Derived Data Types.ottt e 197
B.4.1 MPI_TYPE_CONTIGUOUS 198
B.4.2 MPI_TYPE_VECTOR i 199
B.4.3 MPI_TYPE_HVECTOR. i 200
B.4.4 MPI_TYPE_STRUCT e 201
B.4.5 MPI_TYPE_COMMIT i 203
B.4.6 MPIL_TYPE_EXTENT i 204
B.5 Managing Groupsttt 205
B.5.1 MPI_COMM_SPLIT e 205
Appendix C. Special Notices 207
Appendix D. Related Publications................................. 209
D.1 International Technical Support Organization Publications. 209
D.2 Redbooks on CD-ROMS e 209
D.3 Other Publications. 209
D.4 Information Available onthelInternet 210
How to Get ITSO Redbooks. 211
IBM Redbook Fax Order Form e 212
List of Abbreviations 213
IndeX e 215
ITSO Redbook Evaluation 221

vi RS/6000 SP: Practical MPI Programming

Figures

© Copyright IBM Corp. 1999

I I

SMP Architecture 1
MPP Architecture 2
Single-Thread Process and Multi-Thread Process 3
Message-Passing. e 4
Multiple Single-Thread Processes PerNode 5
One Multi-Thread Process PerNode. 6
SPMD and MPMDo 7
A Sequential Program e 8
An SPMD Program. e 9
. Patterns of Collective Communication. 14
CMP B AST . . 16
CMPL_GATHER . . 18
CMPL_GATHERV . . e 19
. MPI_REDUCE (MPI_SUM) e 20
. MPI_REDUCE (MPI_MAXLOQC). . . . ottt it e e 22
. Data Movement in the Point-to-Point Communication. 24
. Point-to-Point Communication 25
. Duplex Point-to-Point Communication. 26
. Non-Contiguous Data and Derived Data Types. 29
. MPL_TYPE_CONTIGUOUS. e 29
. MPI_TYPE_VECTOR/MPI_TYPE_HVECTOR, 29
CMPL_TYPE_STRUCT e 30
. A Submatrix for Transmission 30
. Utility Subroutine para_type_block2a. 31
. Utility Subroutine para_type_block2. 32
. Utility Subroutine para_type_block3a. 34
. Utility Subroutine para_type_block3. 35
. Multiple Communicators. 36
. Parallel Speed-up: AnldealCase 41
. The Upper Bound of Parallel Speed-Up. 42
. Parallel Speed-Up: AnActualCase................. 42
. The Communication Time e 43
. The Effective Bandwidth 44
. Row-Wise and Column-Wise Block Distributions. 45
. Non-Contiguous Boundary Elementsina Matrix....................... 45
. Pattern 1: Serial Program. e 46
. Pattern 1: Parallelized Program i 47
. Pattern 2: Serial Program. 48
. Pattern 2: Parallel Program e 49
. Pattern 3: Serial Program. 50
. Pattern 3: Parallelized at the InnermostLevel 50
. Pattern 3: Parallelized at the OutermostLevel. 50
. The Input File on a Shared File System. 51
. The Input File Copiedto EachNode 51
. The Input File Read and Distributed by One Process 52
. Only the Necessary Part of the Input Data is Distributed. 52
. One Process Gathers Data and Writes lttoa Local File. 53
. Sequential Writetoa Shared File 53
. Block Distribution 54
. Another Block Distribution 55
vii

51. Cyclic Distribution 57
52. Block-Cyclic Distribution 58
53. The Original Array and the Unshrunken Arrays 59
54. The Shrunk Arrayso e 60
55. Shrinking an Array.ot 61
56. How a Two-Dimensional Array is Stored in Memory. 62
57. Parallelization of a Doubly-Nested Loop: Memory Access Pattern. 63
58. Dependence in Loop Co 63
59. Loop C Block-Distributed Column-Wise 64
60. Dependencein Loop D e 64
61. Loop D Block-Distributed (1) Column-Wise and (2) Row-Wise. 65
62. Block Distribution of Both Dimensions 65
63. The Shape of Submatrices and Their Perimeter. 66
64. Reference to an Outlier Element. L. 67
65. Data Dependence in One-Dimensional FDM 68
66. Data Dependence and Movements in the Parallelized FDM 69
67. Gathering an Array to a Process (Contiguous; Non-Overlapping Buffers)70
68. Gathering an Array to a Process (Contiguous; Overlapping Buffers) 71
69. Gathering an Array to a Process (Non-Contiguous; Overlapping Buffers)72
70. Synchronizing Array Elements (Non-Overlapping Buffers). 73
71. Synchronizing Array Elements (Overlapping Buffers). 74
72. Transposing Block Distributions 75
73. Defining Derived Data Typesot 76
T4, SUPEIPOSITION . . . 79
75. Data Dependences in (a) Program main and (b) Program main2. 80
76. The Pipeline Method 82
77. Data Flow in the Pipeline Method 83
78. Block Size and the Degree of Parallelism in Pipelining. 83
79. The Twisted Decomposition e 84
80. Data Flow in the Twisted Decomposition Method. 86
81. Loop BExpanded e 87
82. Loop-Carried Dependence in One Dimension 88
83. Prefix Sum. 88
84. Incremental Parallelization 92
85. Parallel Speed-Up: AnActualCase 95
86. Speed-Up Ratio for Original and Tuned Programs 96
87. Measuring Elapsed Time e 97
88. Two-Dimensional FDM: Column-Wise Block Distribution. 100
89. Two-Dimensional FDM: Row-Wise Block Distribution 101
90. Two-Dimensional FDM: The Matrix and the Process Grid 102
91. Two-Dimensional FDM: Block Distribution in Both Dimensions (1) 103
92. Dependence on Eight Neighbors 105
93. Two-Dimensional FDM: Block Distribution in Both Dimensions (2) 106
94. Finite Element Method: Four Steps withina Time Step 109
95. Assignment of Elements and Nodes to Processes 110
96. Data Structures for Boundary Nodes 111
97. Data Structures for Data Distribution 111
98. Contribution of Elements to Nodes Are Computed Locally. 113
99. Secondary Processes Send Local Contribution to Primary Processes. 114
100.Updated Node Values Are Sent from Primary to Secondary 115
101.Contribution of Nodes to Elements Are Computed Locally 115
102.Data Distributions in LU Factorization 117
103.First Three Steps of LU Factorization. 118

vili RS/6000 SP: Practical MPI Programming

104.SOR Method: Serial RUn. 120

105.Red-Black SOR Method 121
106.Red-Black SOR Method: Parallel Run. 123
107.ZebraSOR Method e 125
108.Zebra SOR Method: Parallel Run 126
109.Four-Color SORMethod e 129
110.Four-Color SOR Method: Parallel Run 130
111.Random Walk in Two-Dimension 132
112.Interaction of Two Molecules. i 134
113.Forces That Acton Particles i 134
114.Cyclic Distribution inthe OuterLoop it 136
115.Cyclic Distribution of the InnerLoop it 137
116.MPMD Model. e 138
117.Master/Worker Model e 139
118.Using ESSL for Matrix Multiplication 140
119.Using ESSL for Solving Independent Linear Equations 141
120.Global Matrix 143
121.The Process Grid and the Array Descriptor. 144
122.Local Matrices 144
123.Row-Major and Column-Major Process Grids 146
124.BLACS_GRIDINFO 147
125.Global Matrices, Processor Grids, and Array Descriptors. 150
126.Local Matrices 151
127 MPI_BCAST 164
128.MPI_SCATTER 167
129.MPI_SCATTERV e 169
130.MPIL_GATHER e 170
131.MPIL_GATHERV . . . 172
132.MPI_ALLGATHER. 174
133.MPI_ALLGATHERV. 175
134.MPIL_ALLTOALL. . . .o 177
135.MPIL_ALLTOALLY . . 179
136.MPI_REDUCE for Scalar Variables. o, 181
137.MPI_REDUCE for Arrays.o ot e e e 182
138.MPI_ALLREDUCE. 183
139.MPI_SCAN . . 184
140.MPI_REDUCE_SCATTER e e 186
141.MPI_OP_CREATE. e e 188
142.MPI_SEND and MPI_RECV 191
143.MPI_ISEND and MPI_IRECV e 194
144 MPI_TYPE_CONTIGUOUS. e 198
145.MPI_TYPE_VECTOR e e 199
146.MPI_TYPE_HVECTOR e 200
147.MPL_TYPE_STRUCT e 202
148.MPI_COMM _SPLIT e 205

X RS/6000 SP: Practical MPI Programming

Tables

© Copyright IBM Corp. 1999

1. Categorization of Parallel Architectures. 1
2. Latency and Bandwidth of SP Switch (POWER3 Nodes) 6
3. MPI Subroutines Supported by PE2.4 12
4. MPI Collective Communication Subroutines 15
5. MPI Data Types (Fortran Bindings) i 16
6. Predefined Combinations of Operations and Data Types 21
7. MPIData Types (CBIindings).o ottt e e 37
8. Predefined Combinations of Operations and Data Types (C Language). 38
9. Data Types for Reduction Functions (C Language)..................... 38
10. Default Value of MP_EAGER_LIMIT 159
11. Predefined Combinations of Operations and Data Types 181
12. Adding User-Defined Operations. 187

Xi

xil RS/6000 SP: Practical MPI Programming

Preface

This redbook helps you write MPI (Message Passing Interface) programs that run
on distributed memory machines such as the RS/6000 SP. This publication
concentrates on the real programs that RS/6000 SP solution providers want to
parallelize. Complex topics are explained using plenty of concrete examples and
figures.

The SPMD (Single Program Multiple Data) model is the main topic throughout
this publication.

The basic architectures of parallel computers, models of parallel computing, and
concepts used in the MPI, such as communicator, process rank, collective
communication, point-to-point communication, blocking and non-blocking
communication, deadlocks, and derived data types are discussed.

Methods of parallelizing programs using distributed data to processes followed by
the superposition, pipeline, twisted decomposition, and prefix sum methods are
examined.

Individual algorithms and detailed code samples are provided. Several
programming strategies described are; two-dimensional finite difference method,
finite element method, LU factorization, SOR method, the Monte Carlo method,
and molecular dynamics. In addition, the MPMD (Multiple Programs Multiple
Data) model is discussed taking coupled analysis and a master/worker model as
examples. A section on Parallel ESSL is included.

A brief description of how to use Parallel Environment for AIX Version 2.4 and a
reference of the most frequently used MPI subroutines are enhanced with many
illustrations and sample programs to make it more readable than the MPI
Standard or the reference manual of each implementation of MPI.

We hope this publication will erase of the notion that MPI is too difficult, and will
provide an easy start for MPI beginners.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from IBM Japan working at
the RS/6000 Technical Support Center, Tokyo.

Yukiya Aoyama has been involved in technical computing since he joined IBM
Japan in 1982. He has experienced vector tuning for 3090 VF, serial tuning for
RS/6000, and parallelization on RS/6000 SP. He holds a B.S. in physics from
Shimane University, Japan.

Jun Nakano is an IT Specialist from IBM Japan. From 1990 to 1994, he was with
the IBM Tokyo Research Laboratory and studied algorithms. Since 1995, he has
been involved in benchmarks of RS/6000 SP. He holds an M.S. in physics from
the University of Tokyo. He is interested in algorithms, computer architectures,
and operating systems. He is also a coauthor of the redbook, RS/6000 Scientific
and Technical Computing: POWERS3 Introduction and Tuning Guide.

© Copyright IBM Corp. 1999 Xiii

This project was coordinated by:

Scott Vetter
International Technical Support Organization, Austin Center

Thanks to the following people for their invaluable contributions to this project:

Anshul Gupta
IBM T. J. Watson Research Center

Danny Shieh
IBM Austin

Yoshinori Shimoda
IBM Japan

Comments Welcome
Your comments are important to us!
We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

* Fax the evaluation form found in “ITSO Redbook Evaluation” on page 221 to
the fax number shown on the form.

¢ Use the online evaluation form found at http://www.redbooks . ibm.com/

e Send your comments in an internet note t0 redbookeus. ibm.com

Xiv RS/6000 SP: Practical MPl Programming

Chapter 1. Introduction to Parallel Programming

This chapter provides brief descriptions of the architectures that support
programs running in parallel, the models of parallel programming, and an
example of parallel processing.

1.1 Parallel Computer Architectures

© Copyright IBM Corp. 1999

You can categorize the architecture of parallel computers in terms of two aspects:
whether the memory is physically centralized or distributed, and whether or not
the address space is shared. Table 1 provides the relationships of these
attributes.

Table 1. Categorization of Parallel Architectures

Shared Address Space Individual Address Space
Centralized memory SMP (Symmetric N/A
Multiprocessor)
Distributed memory NUMA (Non-Uniform Memory | MPP (Massively Parallel
Access) Processors)

SMP (Symmetric Multiprocessor) architecture uses shared system resources
such as memory and I/O subsystem that can be accessed equally from all the
processors. As shown in Figure 1, each processor has its own cache which may
have several levels. SMP machines have a mechanism to maintain coherency of
data held in local caches. The connection between the processors (caches) and
the memory is built as either a bus or a crossbar switch. For example, the
POWERS3 SMP node uses a bus, whereas the RS/6000 model S7A uses a
crossbar switch. A single operating system controls the SMP machine and it
schedules processes and threads on processors so that the load is balanced.

Processor Processor Processor Processor
| | | |
Cache Cache Cache Cache
| | | |

Bus or Crossbar Switch

|
Memory /O

S

Figure 1. SMP Architecture

MPP (Massively Parallel Processors) architecture consists of nodes connected
by a network that is usually high-speed. Each node has its own processor,
memory, and 1/O subsystem (see Figure 2 on page 2). The operating system is
running on each node, so each node can be considered a workstation. The
RS/6000 SP fits in this category. Despite the term massively, the number of
nodes is not necessarily large. In fact, there is no criteria. What makes the
situation more complex is that each node can be an SMP node (for example,
POWERS3 SMP node) as well as a uniprocessor node (for example, 160 MHz
POWER2 Superchip node).

[Interconnection Network

Processor Processor

Processor

Processor

Memory

Memory

Memory

Memory

Figure 2. MPP Architecture

NUMA (Non-Uniform Memory Access) architecture machines are built on a
similar hardware model as MPP, but it typically provides a shared address space
to applications using a hardware/software directory-based protocol that maintains
cache coherency. As in an SMP machine, a single operating system controls the
whole system. The memory latency varies according to whether you access local
memory directly or remote memory through the interconnect. Thus the name
non-uniform memory access. The RS/6000 series has not yet adopted this
architecture.

1.2 Models of Parallel Programming

1.2.1 SMP Based

The main goal of parallel programming is to utilize all the processors and
minimize the elapsed time of your program. Using the current software
technology, there is no software environment or layer that absorbs the difference
in the architecture of parallel computers and provides a single programming
model. So, you may have to adopt different programming models for different
architectures in order to balance performance and the effort required to program.

Multi-threaded programs are the best fit with SMP architecture because threads
that belong to a process share the available resources. You can either write a
multi-thread program using the POSIX threads library (pthreads) or let the
compiler generate multi-thread executables. Generally, the former option places
the burdeon on the programmer, but when done well, it provides good
performance because you have complete control over how the programs behave.
On the other hand, if you use the latter option, the compiler automatically
parallelizes certain types of DO loops, or else you must add some directives to
tell the compiler what you want it to do. However, you have less control over the
behavior of threads. For details about SMP features and thread coding
techniques using XL Fortran, see RS/6000 Scientific and Technical Computing:
POWERS Introduction and Tuning Guide, SG24-5155.

2 RS/6000 SP: Practical MPI Programming

Single thread Multi-thread

L L
% 1% Thread
l l fork

P1

P1 [P2 P3 P4
P2 join
Shared address space
P3
P4

Process

I

Process

Figure 3. Single-Thread Process and Multi-Thread Process

In Figure 3, the single-thread program processes S1 through S2, where S1 and
S2 are inherently sequential parts and P1 through P4 can be processed in
parallel. The multi-thread program proceeds in the fork-join model. It first
processes S1, and then the first thread forks three threads. Here, the term fork is
used to imply the creation of a thread, not the creation of a process. The four
threads process P1 through P4 in parallel, and when finished they are joined to
the first thread. Since all the threads belong to a single process, they share the
same address space and it is easy to reference data that other threads have
updated. Note that there is some overhead in forking and joining threads.

1.2.2 MPP Based on Uniprocessor Nodes (Simple MPP)

If the address space is not shared among nodes, parallel processes have to
transmit data over an interconnecting network in order to access data that other
processes have updated. HPF (High Performance Fortran) may do the job of data
transmission for the user, but it does not have the flexibility that hand-coded
message-passing programs have. Since the class of problems that HPF resolves
is limited, it is not discussed in this publication.

Introduction to Parallel Programming 3

1.2.3 MPP Based on SMP Nodes (Hybrid MPP)
An RS/6000 SP with SMP nodes makes the situation more complex. In the hybrid

4

Serial

P2

P3

P4

I

Process

Message-passing

Figure 4. Message-Passing

Figure 4 illustrates how a message-passing program runs. One process runs on
each node and the processes communicate with each other during the execution
of the parallelizable part, P1-P4. The figure shows links between processes on
the adjacent nodes only, but each process communicates with all the other
processes in general. Due to the communication overhead, work load unbalance,
and synchronization, time spent for processing each of P1-P4 is generally longer
in the message-passing program than in the serial program. All processes in the

Process 0

Node 1

Process 1 Process 2 Process 3

Node 2 Node 3 Node 4

Data transmission over the interconnect

message-passing program are bound to S1 and S2.

architecture environment you have the following two options.

Multiple Single-Thread Processes per Node

In this model, you use the same parallel program written for simple MPP
computers. You just increase the number of processes according to how many
processors each node has. Processes still communicate with each other by
message-passing whether the message sender and receiver run on the same
node or on different nodes. The key for this model to be successful is that the
intranode message-passing is optimized in terms of communication latency
and bandwidth.

RS/6000 SP: Practical MPI Programming

-+ fitie

e—— 7]

hessage—passing

Process 0 Process 1 Process 2 Process 3

Node 1 Node 2
Figure 5. Multiple Single-Thread Processes Per Node

Parallel Environment Version 2.3 and earlier releases only allow one process
to use the high-speed protocol (User Space protocol) per node. Therefore, you
have to use IP for multiple processes, which is slower than the User Space
protocol. In Parallel Environment Version 2.4, you can run up to four
processes using User Space protocol per node. This functional extension is
called MUSPPA (Multiple User Space Processes Per Adapter). For
communication latency and bandwidth, see the paragraph beginning with
“Performance Figures of Communication” on page 6.

One Multi-Thread Process Per Node

The previous model (multiple single-thread processes per node) uses the
same program written for simple MPP, but a drawback is that even two
processes running on the same node have to communicate through
message-passing rather than through shared memory or memory copy. It is
possible for a parallel run-time environment to have a function that
automatically uses shared memory or memory copy for intranode
communication and message-passing for internode communication. Parallel
Environment Version 2.4, however, does not have this automatic function yet.

Introduction to Parallel Programming 5

6

Message-passing

Lh)
'E Thread Thread
l fork fork
P2 — P3 P4
Join Join
Shared Shared
address address
Process 0 Process 1
Node 1 Node 2

Figure 6. One Multi-Thread Process Per Node

To utilize the shared memory feature of SMP nodes, run one multi-thread
process on each node so that intranode communication uses shared memory
and internode communication uses message-passing. As for the multi-thread
coding, the same options described in 1.2.1, “SMP Based” on page 2 are
applicable (user-coded and compiler-generated). In addition, if you can
replace the parallelizable part of your program by a subroutine call to a
multi-thread parallel library, you do not have to use threads. In fact, Parallel
Engineering and Scientific Subroutine Library for AIX provides such libraries.

Note

Further discussion of MPI programming using multiple threads is beyond the
scope of this publication.

Performance Figures of Communication

Table 2 shows point-to-point communication latency and bandwidth of User
Space and IP protocols on POWER3 SMP nodes. The software used is AIX
4.3.2, PSSP 3.1, and Parallel Environment 2.4. The measurement was done
using a Pallas MPI Benchmark program. Visit
http://www.pallas.de/pages/pmb.htm for details.

Table 2. Latency and Bandwidth of SP Switch (POWERS3 Nodes)

Protocol Location of two processes | Latency Bandwidth
User Space On different nodes 22 usec 133 MB/sec
On the same node 37 usec 72 MB/sec

RS/6000 SP: Practical MPI Programming

Protocol Location of two processes | Latency Bandwidth

IP On different nodes 159 usec 57 MB/sec

On the same node 119 usec 58 MB/sec

Note that when you use User Space protocol, both latency and bandwidth of
intranode communication is not as good as internode communication. This is
partly because the intranode communication is not optimized to use memory
copy at the software level for this measurement. When using SMP nodes,
keep this in mind when deciding which model to use. If your program is not
multi-threaded and is communication-intensive, it is possible that the program
will run faster by lowering the degree of parallelism so that only one process
runs on each node neglecting the feature of multiple processors per node.

1.3 SPMD and MPMD

When you run multiple processes with message-passing, there are further
categorizations regarding how many different programs are cooperating in
parallel execution. In the SPMD (Single Program Multiple Data) model, there is
only one program and each process uses the same executable working on
different sets of data (Figure 7 (a)). On the other hand, the MPMD (Multiple
Programs Multiple Data) model uses different programs for different processes,
but the processes collaborate to solve the same problem. Most of the programs
discussed in this publication use the SPMD style. Typical usage of the MPMD
model can be found in the master/worker style of execution or in the coupled
analysis, which are described in 4.7, “MPMD Models” on page 137.

SN T /N T T T

31190 &1 1%
31179 1%
$1 19 AR
AR AR

9

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Nod

T v
{ 9 {
{ v v
{ {

1 Node 2 Node 3

(1]
1]

{a) SPMD {b) MPMD: Master/Worker {c) MPMD: Coupled Analysis

Figure 7. SPMD and MPMD

Figure 7 (b) shows the master/worker style of the MPMD model, where a.out is
the master program which dispatches jobs to the worker program, b.out. There
are several workers serving a single master. In the coupled analysis (Figure 7
(c)), there are several programs (a.out, b.out, and c.out), and each program does
a different task, such as structural analysis, fluid analysis, and thermal analysis.
Most of the time, they work independently, but once in a while, they exchange
data to proceed to the next time step.

Introduction to Parallel Programming 7

8

In the following figure, the way an SPMD program works and why
message-passing is necessary for parallelization is introduced.

| a.out |

e

¥

A process

1. Read array a() from
the input file

2. 8Bet is=1 and ie=6
3. Process from aiis) to aiie)

4, Write array al) to the
output file

is ie

a 2 3 4 I 6
G—{ololo[a[a[4]

a
[o/@/m/m[ala|

at 4 4y 4
T—e[e[m[m[A]4]

Figure 8. A Sequential Program

Figure 8 shows a sequential program that reads data from a file, does some
computation on the data, and writes the data to a file. In this figure, white circles,
squares, and triangles indicate the initial values of the elements, and black
objects indicate the values after they are processed. Remember that in the SPMD
model, all the processes execute the same program. To distinguish between
processes, each process has a unique integer called rank. You can let processes
behave differently by using the value of rank. Hereafter, the process whose rank
is ris referred to as process r. In the parallelized program in Figure 9 on page 9,
there are three processes doing the job. Each process works on one third of the
data, therefore this program is expected to run three times faster than the
sequential program. This is the very benefit that you get from parallelization.

RS/6000 SP: Practical MPI Programming

Process 0

1. Read array a() from
the input file

2. Get my rank

3. If rank==0 then is=1, ie=2
If rank==1 then is=3, ie=4
If rank==2 then is=5, ie=&

4. Process from a(is) to aiie)

5. Gather the results
to process 0

6. If rank==0 then write array
a() to the ocutput file

a if ig 3 4 5 &
Eﬂ—-IClJICfIDIDIAIAI

OO EENN

Process 1

1. Read array a() from
the input file

2. Get my rank

3. If rank==0 then is=1, ie=2
If rank==1 then is=3, ie=4
If rank==2 then is=5, ie=&

4. Process from a(is) to aiie)

5. Gather the results
to process 0

6. If rank==0 then write array
a() to the output file

a 12 ? i? 5 6
T—{olololO]a]a]

a‘IOIOITIIIAIAI

Process 2

1. Read array al) from
the input file

2. Get my rank

3. If rank==0 then is=1, ie=2
If rank==1 then is=3, ie=4
If rank==2 then is=5, ie=&

4. Process from a(is) to aiie)

5. Gather the results
to process 0

6. If rank==0 then write array
a() to the output file

a 12 3 d i? ig
i [S1[C][][S]PNVN

‘lo]o]O]O]A]A]

Yy ¥ ¥ ¥ l ¥
a
W IOICICINYY

Figure 9. An SPMD Program

In Figure 9, all the processes read the array in Step 1 and get their own rank in

Step 2. In Steps 3 and 4, each process determines which part of the array it is in

charge of, and processes that part. After all the processes have finished in Step

4, none of the processes have all of the data, which is an undesirable side effect

of parallelization. It is the role of message-passing to consolidate the processes

separated by the parallelization. Step 5 gathers all the data to a process and that
process writes the data to the output file.

To summarize, keep the following two points in mind:

* The purpose of parallelization is to reduce the time spent for computation.
Ideally, the parallel program is p times faster than the sequential program,
where p is the number of processes involved in the parallel execution, but this
is not always achievable.

* Message-passing is the tool to consolidate what parallelization has separated.
It should not be regarded as the parallelization itself.

The next chapter begins a voyage into the world of parallelization.

Introduction to Parallel Programming

9

10 RS/6000 SP: Practical MPI Programming

Chapter 2. Basic Concepts of MPI

In this chapter, the basic concepts of the MPI such as communicator,
point-to-point communication, collective communication, blocking/non-blocking
communication, deadlocks, and derived data types are described. After reading
this chapter, you will understand how data is transmitted between processes in
the MPI environment, and you will probably find it easier to write a program using
MPI rather than TCP/IP.

2.1 What is MPI?

The Message Passing Interface (MPI) is a standard developed by the Message
Passing Interface Forum (MPIF). It specifies a portable interface for writing
message-passing programs, and aims at practicality, efficiency, and flexibility at
the same time. MPIF, with the participation of more than 40 organizations, started
working on the standard in 1992. The first draft (Version 1.0), which was
published in 1994, was strongly influenced by the work at the IBM T. J. Watson
Research Center. MPIF has further enhanced the first version to develop a
second version (MPI-2) in 1997. The latest release of the first version (Version
1.2) is offered as an update to the previous release and is contained in the MPI-2
document. For details about MPIl and MPIF, visit http://www.mpi-forum.org/. The
design goal of MPI is quoted from “MPI: A Message-Passing Interface Standard
(Version 1.1)” as follows:

e Design an application programming interface (not necessarily for compilers or
a system implementation library).

» Allow efficient communication: Avoid memory-to-memory copying and allow
overlap of computation and communication and offload to communication
co-processor, where available.

» Allow for implementations that can be used in a heterogeneous environment.
e Allow convenient C and Fortran 77 bindings for the interface.

» Assume a reliable communication interface: the user need not cope with
communication failures. Such failures are dealt with by the underlying
communication subsystem.

e Define an interface that is not too different from current practice, such as
PVM, NX, Express, p4, etc., and provides extensions that allow greater
flexibility.

e Define an interface that can be implemented on many vendor’s platforms, with
no significant changes in the underlying communication and system software.

e Semantics of the interface should be language independent.

e The interface should be designed to allow for thread-safety.

The standard includes:
¢ Point-to-point communication
* Collective operations
* Process groups
e Communication contexts

* Process topologies

© Copyright IBM Corp. 1999 1

* Bindings for Fortran 77 and C
* Environmental management and inquiry

* Profiling interface

The IBM Parallel Environment for AIX (PE) Version 2 Release 3 accompanying
with Parallel System Support Programs (PSSP) 2.4 supports MPI Version 1.2,
and the IBM Parallel Environment for AlX Version 2 Release 4 accompanying
with PSSP 3.1 supports MPI Version 1.2 and some portions of MPI-2. The MPI
subroutines supported by PE 2.4 are categorized as follows:

Table 3. MPI Subroutines Supported by PE 2.4

Type Subroutines Number
Point-to-Point MPI_SEND, MPI_RECV, MPI_WAIT,... 35
Collective Communication MPI_BCAST, MPI_GATHER, MPI_REDUCE,... 30
Derived Data Type MPI_TYPE_CONTIGUOUS, 21
MPI_TYPE_COMMIT,...

Topology MPI_CART_CREATE, MPI_GRAPH_CREATE,... | 16
Communicator MPI_COMM_SIZE, MPI_COMM_RANK,... 17
Process Group MPI_GROUP_SIZE, MPI_GROUP_RANK,... 13
Environment Management MPI_INIT, MPI_FINALIZE, MPI_ABORT,... 18
File MPI_FILE_OPEN, MPI_FILE_READ_AT,... 19
Information MPI_INFO_GET, MPI_INFO_SET,... 9
IBM Extension MPE_IBCAST, MPE_IGATHER,... 14

You do not need to know all of these subroutines. When you parallelize your
programs, only about a dozen of the subroutines may be needed. Appendix B,
“Frequently Used MPI Subroutines lllustrated” on page 161 describes 33
frequently used subroutines with sample programs and illustrations. For detailed
descriptions of MPI subroutines, see MPI Programming and Subroutine
Reference Version 2 Release 4, GC23-3894.

2.2 Environment Management Subroutines

12

This section shows what an MPI program looks like and explains how it is
executed on RS/6000 SP. In the following program, each process writes the
number of the processes and its rank to the standard output. Line numbers are
added for the explanation.

env.f
1 PROGRAM env
2 INCLUDE ’‘mpif.h’
3 CALL MPI INIT (ierr)
4 CALL MPI_COMM_SIZE (MPI_COMM WORLD, nprocs, ierr)
5 CALL MPI_ COMM RANK(MPI COMM WORLD, myrank, ierr)
6 PRINT *,’nprocs =',nprocs, 'myrank =’',myrank
7 CALL MPI FINALIZE (ierr)
8 END

RS/6000 SP: Practical MPI Programming

Note that the program is executed in the SPMD (Single Program Multiple Data)
model. All the nodes that run the program, therefore, need to see the same
executable file with the same path name, which is either shared among nodes by
NFS or other network file systems, or is copied to each node’s local disk.

Line 2 includes mpif.h, which defines MPI-related parameters such as
MPI_COMM_WORLD and MPI_INTEGER. For example, MPI_INTEGER is an
integer whose value is 18 in Parallel Environment for AIX. All Fortran procedures
that use MPI subroutines have to include this file. Line 3 calls MPI_INIT for
initializing an MPI environment. MPI_INIT must be called once and only once
before calling any other MPI subroutines. In Fortran, the return code of every MPI
subroutine is given in the last argument of its subroutine call. If an MPI subroutine
call is done successfully, the return code is 0; otherwise, a non zero value is
returned. In Parallel Environment for AlX, without any user-defined error handler,
a parallel process ends abnormally if it encounters an MPI error: PE prints error
messages to the standard error output and terminates the process. Usually, you
do not check the return code each time you call MPI subroutines. The subroutine
MPI_COMM_SIZE in line 4 returns the number of processes belonging to the
communicator specified in the first argument. A communicator is an identifier
associated with a group of processes. MPI_COMM_WORLD defined in mpif.h
represents the group consisting of all the processes participating in the parallel
job. You can create a new communicator by using the subroutine
MPI_COMM_SPLIT. Each process in a communicator has its unique rank, which
is in the range 0..size-1 where size is the number of processes in that
communicator. A process can have different ranks in each communicator that the
process belongs to. MPI_COMM_RANK in line 5 returns the rank of the process
within the communicator given as the first argument. In line 6, each process prints
the number of all processes and its rank, and line 7 calls MPI_FINALIZE.
MPI_FINALIZE terminates MPI processing and no other MPI call can be made
afterwards. Ordinary Fortran code can follow MPI_FINALIZE. For details of MPI
subroutines that appeared in this sample program, see B.1, “Environmental
Subroutines” on page 161.

Suppose you have already decided upon the node allocation method and it is
configured appropriately. (Appendix A, “How to Run Parallel Jobs on RS/6000
SP” on page 155 shows you the detail.) Now you are ready to compile and
execute the program as follows. (Compile options are omitted.)

$ mpxlf env.f

** env === End of Compilation 1 ===

1501-510 Compilation successful for file env.f.
$ export MP_STDOUTMODE=ordered

$ export MP LABELIO=yes

$ a.out -procs 3

0: nprocs = 3 myrank = 0
1: nprocs = 3 myrank = 1
2: nprocs = 3 myrank = 2

For compiling and linking MP| programs, use the mpx1£f command, which takes
care of the paths for include files and libraries for you. For example, mpif.h is
located at /usr/lpp/ppe.poe/include, but you do not have to care about it. The
environment variables MP_STDOUTMODE and MP_LABELIO control the stdout
and stderr output from the processes. With the setting above, the output is sorted
by increasing order of ranks, and the rank number is added in front of the output
from each process.

Basic Concepts of MPI 13

Although each process executes the same program in the SPMD model, you can
make the behavior of each process different by using the value of the rank. This
is where the parallel speed-up comes from; each process can operate on a
different part of the data or the code concurrently.

2.3 Collective Communication Subroutines

-«+—— Process

Collective communication allows you to exchange data among a group of
processes. The communicator argument in the collective communication
subroutine calls specifies which processes are involved in the communication. In
other words, all the processes belonging to that communicator must call the same
collective communication subroutine with matching arguments. There are several
types of collective communications, as illustrated below.

data ————»

PO | A A PO | A | A*B*C*D
P1 broadcast | 5 p1|g | reduce
> — >

P2 A P2 |C |
P3 A P3 | D |

*. some operator
PolA|B|C|D scatter A PO | A | ;II AB*C'D
P1 — B P1|B| BT |ABCD
P2 +— (C Pz|C A'B*C*D

gather]

P3 D P3 | D | A'B*C*D

*. some operator
PO | A A|lB|C|D PO | A | A
P1|B allgatherh AlBlclD P1 i scan‘ A'B
Pz |C AlB|C|D Pz |C | A'B*C
P3|D AlB|C|D P3| D | A*B*C*D

*. some operator
PO [AD|AT|AZ |A3 A0 [BO|C0|DO PO |AD|A1]|A2|A3| reduce |A0*BO*CO*DO
P1 |Bo|B1|B2|B3| AMtoall [aq|B1|ci|DA P1|Bo|B1|B2|B3| %" |A1B1*C1'D1Y
Pz [C0|C1|C2|C3 Az |Bz|C2|D2 Pz [C0|C1|C2|C3 A2*B2*C2'D2
P3 [D0|D1|D2|D3 A3 |B3|C3|D3 P3 [D0|D1]|D2|D3 A3*B3*'C3'D3

*. some operator

Figure 10. Patterns of Collective Communication

14

Some of the patterns shown in Figure 10 have a variation for handling the case
where the length of data for transmission is different among processes. For
example, you have subroutine MPI_GATHERYV corresponding to MPI_GATHER.

RS/6000 SP: Practical MPI Programming

2.3.1 MPI_BCAST

Table 4 shows 16 MPI collective communication subroutines that are divided into
four categories.

Table 4. MPI Collective Communication Subroutines

Category Subroutines

1. One buffer MPI_BCAST

2. One send buffer and | MPI_GATHER, MPI_SCATTER, MPI_ALLGATHER,
one receive buffer MPI_ALLTOALL, MPI_GATHERV, MPI_SCATTERY,
MPI_ALLGATHERYV, MPI_ALLTOALLV

3. Reduction MPI_REDUCE, MPI_ALLREDUCE, MPI_SCAN,
MPI_REDUCE_SCATTER

4. Others MPI_BARRIER, MPI_OP_CREATE, MPI_OP_FREE

The subroutines printed in boldface are used most frequently. MPI_BCAST,
MPI_GATHER, and MPI_REDUCE are explained as representatives of the main
three categories.

All of the MPI collective communication subroutines are blocking. For the
explanation of blocking and non-blocking communication, see 2.4.1, “Blocking
and Non-Blocking Communication” on page 23. IBM extensions to MPI provide
non-blocking collective communication. Subroutines belonging to categories 1, 2,
and 3 have IBM extensions corresponding to non-blocking subroutines such as
MPE_IBCAST, which is a non-blocking version of MPI_BCAST.

The subroutine MPI_BCAST broadcasts the message from a specific process
called root to all the other processes in the communicator given as an argument.
(See also B.2.1, “MPI_BCAST” on page 163.)

bcast.f
1 PROGRAM bcast
2 INCLUDE ’‘mpif.h’
3 INTEGER imsg(4)
4 CALL MPI_INIT(ierr)
5 CALL MPI_COMM_SIZE (MPI_COMM WORLD, nprocs, ierr)
6 CALL MPI_COMM RANK (MPI_COMM WORLD, myrank, ierr)
7 IF (myrank==0) THEN
8 DO i=1,4
9 imsg (i) = 1
10 ENDDO
11 ELSE
12 DO i=1,4
13 imsg(i) = 0
14 ENDDO
15 ENDIF
16 PRINT *,’'Before:’,imsg
17 CALL MP_FLUSH(l)
18 CALL MPI_BCAST(imSg, 4, MPI INTEGER,
19 & 0, MPI_COMM WORLD, ierr)
20 PRINT *,’'After :’,imsg
21 CALL MPI_FINALIZE(ierr)
22 END

Basic Concepts of MPI 15

In bcast . £, the process with rank=0 is chosen as the root. The root stuffs an
integer array imsg with data, while the other processes initialize it with zeroes.
MPI_BCAST is called in lines 18 and 19, which broadcasts four integers from the
root process (its rank is 0, the fourth argument) to the other processes in the
communicator MPI_COMM_WORLD. The triplet (imsg, 4, MPI_INTEGER) specifies
the address of the buffer, the number of elements, and the data type of the
elements. Note the different role of imsg in the root process and in the other
processes. On the root process, imsg is used as the send buffer, whereas on
non-root processes, it is used as the receive buffer. MP_FLUSH in line 17 flushes
the standard output so that the output can be read easily. MP_FLUSH is not an
MPI subroutine and is only included in IBM Parallel Environment for AIX. The
program is executed as follows:

$ a.out -procs 3
0: Before: 1 2 3 4
1: Before: 0 0 0 O
2: Before: 0 0 0 O
0: After : 1 2 3 4
1: After : 1 2 3 4
2: After : 1 2 3 4
MPI_COMM_WORLD
rank=0=root rank=1 rank=2

cl0]0]0 VY Y

MPIINTEGER 112]3]|4 I e I e

1121314 1121314

imsg imsg imsg

Figure 11. MPI_BCAST
Descriptions of MPI data types and communication buffers follow.

MPI subroutines recognize data types as specified in the MPI standard. The
following is a description of MPI data types in the Fortran language bindings.

Table 5. MPI Data Types (Fortran Bindings)

MPI Data Types Description (Fortran Bindings)
MPI_INTEGER1 1-byte integer

MPI_INTEGER2 2-byte integer

MPI_INTEGER4, MPI_INTEGER 4-byte integer

MPI_REAL4, MPI_REAL 4-byte floating point

MPI_REALS8, MPI_DOUBLE_PRECISION 8-byte floating point

MPI_REAL16 16-byte floating point
MPI1_COMPLEX8, MPI_COMPLEX 4-byte float real, 4-byte float imaginary
MPI1_COMPLEX186, 8-byte float real, 8-byte float imaginary

MPI_DOUBLE_COMPLEX

16 RS/6000 SP: Practical MPI Programming

MPI Data Types Description (Fortran Bindings)
MPI_COMPLEX32 16-byte float real, 16-byte float imaginary
MPI_LOGICAL1 1-byte logical

MPI_LOGICAL2 2-byte logical

MPI_LOGICAL4, MPI_LOGICAL 4-byte logical

MPI_CHARACTER 1-byte character

MPI_BYTE, MPI_PACKED N/A

You can combine these data types to make more complex data types called
derived data types. For details, see 2.5, “Derived Data Types” on page 28.

As line 18 of bcast.f shows, the send buffer of the root process and the receive
buffer of non-root processes are referenced by the same name. If you want to use
a different buffer name in the receiving processes, you can rewrite the program
as follows:

IF (myrank==0) THEN

CALL MPI BCAST(imsg, 4, MPI INTEGER, 0, MPI COMM WORLD, ierr)
ELSE

CALL MPI BCAST(jmsg, 4, MPI INTEGER, 0, MPI COMM WORLD, ierr)
ENDIF

In this case, the contents of imsg of process 0 are sent to jmsg of the other
processes. Make sure that the amount of data transmitted matches between the
sending process and the receiving processes.

2.3.2 MPI_GATHER

The subroutine MPI_GATHER transmits data from all the processes in the
communicator to a single receiving process. (See also B.2.5, “MPI_GATHER” on
page 169 and B.2.6, “MPI_GATHERV” on page 171.)

gather.f
1 PROGRAM gather
2 INCLUDE ’‘mpif.h’
3 INTEGER irecv(3)
4 CALL MPI INIT (ierr)
5 CALL MPI_COMM_SIZE (MPI_COMM WORLD, nprocs, ierr)
6 CALL MPI_COMM RANK (MPI_COMM WORLD, myrank, ierr)
7 isend = myrank + 1
8 CALL MPI GATHER(isend, 1, MPI_ INTEGER,
9 & irecv, 1, MPI INTEGER,
10 & 0, MPI_COMM WORLD, ierr)
11 IF (myrank==0) THEN
12 PRINT *,’irecv =',irecv
13 ENDIF
14 CALL MPI FINALIZE (ierr)
15 END

In this example, the values of isend of processes 0, 1, and 2 are 1, 2, and 3
respectively. The call of MPI_GATHER in lines 8-10 gathers the value of isend to
a receiving process (process 0) and the data received are copied to an integer
array irecv in increasing order of rank. In lines 8 and 9, the triplets (isend, 1,

Basic Concepts of MPI 17

18

MPI INTEGER) and (irecv, 1, MPI_INTEGER) specify the address of the send/receive
buffer, the number of elements, and the data type of the elements. Note that in
line 9, the number of elements received from each process by the root process (in
this case, 1) is given as an argument. This is not the total number of elements
received at the root process.

$ a.out -procs 3

0: irecv = 1 2 3
MPI_COMM_WORLD
rank=0=root rank=1 rank=2
MP! INTEGER ————
Tx1 I 1 3
isend isend isend
MPI_INTEGER 1
x1
3
irecv

Figure 12. MPI_GATHER

Important

The memory locations of the send buffer (isend) and the receive buffer (irecv)
must not overlap. The same restriction applies to all the collective
communication subroutines that use send and receive buffers (categories 2
and 3 in Table 4 on page 15).

In MPI-2, this restriction is partly removed: You can use the send buffer as the
receive buffer by specifying MPI_IN_PLACE as the first argument of
MPI_GATHER at the root process. In such a case, sendcount and sendtype are
ignored at the root process, and the contribution of the root to the gathered array
is assumed to be in the correct place already in the receive buffer.

When you use MPI_GATHER, the length of the message sent from each process
must be the same. If you want to gather different lengths of data, use
MPI_GATHERYV instead.

RS/6000 SP: Practical MPI Programming

comm

rank=0=root

rank=1

1

Figure 13. MPI_GATHERV

As Figure 13 shows, MPI_GATHERYV gathers messages with different sizes and
you can specify the displacements that the gathered messages are placed in the
receive buffer. Like MPI_GATHER, subroutines MPI_SCATTER,
MPI_ALLGATHER, and MPI_ALLTOALL have corresponding “V” variants,
namely, MPI_SCATTERYV, MPI_ALLGATHERYV, and MPI_ALLTOALLV.

2.3.3 MPI_REDUCE

The subroutine MPI_REDUCE does reduction operations such as summation of

data distributed over processes, and brings the result to the root process. (See

also B.2.11, “MPI_REDUCE” on page 180.)

reduce.f

0 J 0 U Ww N

e el
W N R o

PROGRAM reduce
INCLUDE ’‘mpif.h’

REAL a(9)

CALL MPI INIT (ierr)

CALL MPI_COMM_SIZE (MPI_COMM_WORLD,
CALL MPI_COMM_RANK (MPI_COMM_WORLD,
ista = myrank * 3 + 1

iend = ista + 2

DO i=ista,iend
a(i) = 1

ENDDO

sum = 0.0

DO i=ista,iend

nprocs, ierr)

myrank, ierr)

Basic Concepts of MPI

19

20

14 sum =

sum + a(i)

15 ENDDO

16 CALL MPI REDUCE (sum, tmp, 1,
17 & MPI_COMM WORLD,
18 sum = tmp

19 IF (myrank== THEN

20 PRINT *,’sum =',sum

21 ENDIF

22 CALL MPI_FINALIZE(ierr)

23 END

MPI_ REAL,

MPI_SUM, O,

ierr)

The program above calculates the sum of a floating-point array a (i) (i=1..9). Itis
assumed that there are three processes involved in the computation, and each
process is in charge of one third of the array a (). In lines 13-15, a partial sum
(sum) is calculated by each process, and in lines 16-17, these partial sums are
added and the result is sent to the root process (process 0). Instead of nine
additions, each process does three additions plus one global sum. As is the case
with MPI_GATHER, the send buffer and the receive buffer cannot overlap in
memory. Therefore, another variable, tmp, had to be used to store the global sum
of sum The fifth argument of MPI_REDUCE, MPI_SUM, specifies which reduction
operation to use, and the data type is specified as MPI_REAL. The MPI provides
several common operators by default, where MPI_SUM is one of them, which are
defined in mpif.h. See Table 6 on page 21 for the list of operators. The following

output and figure show how the program is executed.

$ a.out -procs 3

0: sum = 45.00000000
MPI_COMM_WORLD
rank=0=root rank=1 rank=2
T2 2 45 6 7 8 8 T2 2 456 7 8 8 T2 3 45 6 7 8 8
HIEERRERRN RERRCECHRNRRERRRRREEE
array a array a array a
sum sum 24 | sum

Figure 14. MPI_REDUCE (MPI_SUM)

When you use MPI_REDUCE, be aware of rounding errors that MPI_REDUCE
may produce. In floating-point computations with finite accuracy, you have
(a+b)y+c#a+(b+c) in general. In reduce.f, you wanted to calculate the sum of
the array a(). But since you calculate the partial sum first, the result may be

different from what you get using the serial program.

Sequential computation:

a(l) + a(2) + a(3)

RS/6000 SP: Practical MPI Programming

+ al(4)

+ a(5) + al(s6)

+ al(7)

+ a(8) + al(9)

Parallel computation:

[a(1l) + a(2) + a(3)] + [a(4) + a(5) + a(6)] + [a(7) + a(8) + a(9)]

Moreover, in general, you need to understand the order that the partial sums are
added. Fortunately, in PE, the implementation of MPI_REDUCE is such that you
always get the same result if you execute MPI_REDUCE with the same
arguments using the same number of processes.

Table 6. Predefined Combinations of Operations and Data Types

Operation Data type

MPI_SUM (sum),
MPI_PROD (product)

MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION, MPI_COMPLEX

MPI_MAX (maximum),
MPI_MIN (minimum)

MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION

MPI_MAXLOC (max value
and location),
MPI_MINLOC (min value
and location)

MPI_2INTEGER,
MPI_2REAL,
MPI_2DOUBLE_PRECISION

MPI_LAND (logical AND), | MPI_LOGICAL
MPI_LOR (logical OR),

MPI_LXOR (logical XOR)

MPI_BAND (bitwise AND), | MPI_INTEGER,
MPI_BOR (bitwise OR), | MPI_BYTE

MPI_BXOR (bitwise XOR)

MPI_MAXLOC obtains the value of the maximum element of an array and its
location at the same time. If you are familiar with XL Fortran intrinsic functions,
MPI_MAXLOC can be understood as MAXVAL and MAXLOC combined. The data
type MPI_2INTEGER in Table 6 means two successive integers. In the Fortran
bindings, use a one-dimensional integer array with two elements for this data
type. For real data, MPI_2REAL is used, where the first element stores the
maximum or the minimum value and the second element is its location converted
to real. The following is a serial program that finds the maximum element of an
array and its location.

PROGRAM maxloc_s
INTEGER n(9)

DATA n /12, 15, 2, 20, 8, 3, 7, 24, 52/
imax = -999
DO i1 =1, 9
IF (n(i) > imax) THEN
imax = n(1i)
iloc = i
ENDIF
ENDDO
PRINT *, 'Max =’, imax, ’'Location =’, iloc
END

The preceding program is parallelized for three-process execution as follows:

PROGRAM maxloc_p
INCLUDE ‘mpif.h’
INTEGER n(9)

Basic Concepts of MPI 21

INTEGER isend(2), irecv(2)

DATA n /12, 15, 2, 20, 8, 3, 7, 24, 52/

CALL MPI INIT (ierr)

CALL MPI_COMM_SIZE(MPI_COMM WORLD, nprocs, ierr)
CALL MPI_COMM RANK (MPI_COMM WORLD, myrank, ierr)

ista = myrank * 3 + 1
iend = ista + 2
imax = -999
DO i = ista, iend
IF (n(i) > imax) THEN
imax = n(1i)
iloc = i
ENDIF
ENDDO
isend (1) = imax
isend(2) = iloc
CALL MPI_REDUCE(isend, irecv, 1, MPI 2INTEGER,
& MPI_MAXLOC, 0, MPI_COMM WORLD, ierr)
IF (myrank == 0) THEN
PRINT *, 'Max =', irecv(l), ’'Location =’', irecv(2)
ENDIF
CALL MPI_FINALIZE(ierr)
END

Note that local maximum (imax) and its location (iloc) is copied to an array
isend(1:2) before reduction.

MPI_COMM_WORLD

rank=0=root rank=1 rank=2
T2 3 ¢ 5 8 7 8 & T2 3 ¢ 5 8 7 8 & T2 3 ¢ 5 8 7 8 &
2] [[L[] (DL fofefs] [[] [[111]]I[redp?]
array n array n array n

15 isend E isend

h .
Irecy
Z0

Figure 15. MPI_REDUCE (MPI_MAXLOC)

The output of the program is shown below.

$ a.out -procs 3
0: Max = 52 Location = 9

If none of the operations listed in Table 6 on page 21 meets your needs, you can
define a new operation with MPI_OP_CREATE. Appendix B.2.15,
“MPI_OP_CREATE” on page 187 shows how to define “MPI_SUM” for
MPI_DOUBLE_COMPLEX and “MPI_MAXLOC” for a two-dimensional array.

22 RS/6000 SP: Practical MPI Programming

2.4 Point-to-Point Communication Subroutines

When you use point-to-point communication subroutines, you should know about
the basic notions of blocking and non-blocking communication, as well as the
issue of deadlocks.

2.4.1 Blocking and Non-Blocking Communication

Even when a single message is sent from process 0 to process 1, there are
several steps involved in the communication. At the sending process, the
following events occur one after another.

1. The data is copied to the user buffer by the user.

2. The user calls one of the MPI send subroutines.

3. The system copies the data from the user buffer to the system buffer.

4. The system sends the data from the system buffer to the destination

process.

The term user buffer means scalar variables or arrays used in the program. The
following occurs during the receiving process:

1. The user calls one of the MPI receive subroutines.

2. The system receives the data from the source process and copies it to the
system buffer.

3. The system copies the data from the system buffer to the user buffer.

4